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SUMMARY 
 
A simple approach is proposed for assessing laboratory performance and data 
quality under a Performance-Based Measurement System (PBMS).  The 
proposed approach compares performance data with project-specific 
Measurement Quality Objectives before selecting a laboratory for sample 
analysis.  The approach emphasizes documented performance under specified 
protocols.  A laboratory must establish and implement detailed standard 
operating procedures (SOPs) for all major operations and document the process 
and results.  A laboratory demonstrates its performance through Method 
Detection Limit (MDL) studies, Laboratory Control Samples (LCS) analysis, and 
frequent analysis of blind real-world performance evaluation (PE) samples.  Data 
generated and reported under the proposed approach have an estimated 
uncertainty that meets the reporting requirement for uncertainty of the new 
International Organization of Standardization (ISO) Guide 17025.  This 
presentation discusses why and how to use the proposed approach to assess 
performance and data quality under a PBMS. 
 
INTRODUCTION 
 
The production of data of known and acceptable quality that meet project-
specified Data Quality Objectives (DQOs) is a primary goal of every 
environmental sampling and analysis activity.  EPA’s Environmental Monitoring 
Management Council (EMMC) recommends using PBMS for environmental 
sample analysis.  EMMC defines PBMS as “A set of processes wherein the data 
quality needs, mandates or limitations of a program or project are specified, and 
serve as criteria for selecting appropriate methods to meet those needs in a cost-
effective manner”.  To determine data quality needs, EPA developed a seven-
step DQO process that provides project-specific limits on decision errors.  Based 
on the data quality needs, before the fact one determines if a laboratory is 
qualified to perform the analysis and after the fact determines if the data 
produced is of acceptable quality. 
 
It is noted that the data quality in many data packages is ambiguous or unknown 
so that the data usability may be judged limited or questionable.  Typical data 
packages report analyte concentrations for all hits, “ND” or “<” signs along with 
quantitation/reporting limits for non-detects, and associated quality control (QC) 
data and the control limits.  Typical QC data include analysis of calibration 



verification samples, blank samples, laboratory control samples (LCS), matrix 
duplicates (MD), matrix spikes (MS), and matrix spike duplicates (MSD), 
depending on the contract’s specifications.  These QC data and associated 
control limits should inform data users of the quality of sample data.  However, 
the origin or determination procedures of the quantitation/reporting limits and the 
QC control limits are often not clear or appropriate such that the data quality is 
unknown or misleading. 
 
This presentation proposes a simple approach for assessing laboratory 
performance and data quality.  The approach is based on the existing QA/QC 
platform that is adopted by most environmental laboratories and is applicable to 
both definitive and screening methods.  Although both sampling and analysis 
errors affect the quality of environmental data, the following discussions focus on 
laboratory analytical errors on precision and bias. 
 
THE PROPOSED APPROACH 
 
The proposed approach emphasizes four key elements of conventional 
laboratory QA/QC operations. 
 

(1) SOP Preparation 
(2) MDL Study 
(3) LCS Analysis 
(4) Proficiency Testing 

 
First, a laboratory must establish and implement detailed SOPs for all key 
laboratory operations that affect data quality and document the results of key 
operations.  The SOPs and documentation provide an important aspect of 
scientific evidence and legal defensibility for reported data. 
 
Second, a laboratory shall follow 40 CFR 136 Appendix B to establish MDLs for 
all target analytes.  If all laboratories use the same procedure to determine 
MDLs, the MDLs would be a good universal indicator for evaluation of laboratory 
performance under known conditions.  Based on MDLs, a laboratory determines 
the method quantitation limits (MQLs) and the concentration of the lowest, 
allowable calibration standards.  The uncertainty of analytical data increases as 
analyte concentrations decrease and approach MDLs.  The estimated relative 
uncertainty of analytes measured at a concentration of N times MDL would be: 
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where t(n-1, 0.99) is the 

Student’s t factor for a 99% confidence level and a standard deviation estimate 
from an MDL study with n-1 degrees of freedom (1).  At MDLs, the relative 
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uncertainty would be about ±100%.  The estimated relative uncertainty will be 
exceeded by the uncertainty of LCS recovery at higher concentrations.  Due to 
the large uncertainty near MDLs, data biases at concentrations below MQLs 
would be assumed to be equal to the mean of LCS recoveries. 
 
Third, a laboratory shall establish control charts for the recovery of LCSs (i.e., 
blank spikes).  If all laboratories use equivalent LCSs, empirically established in-
house control limits would be another good universal indicator for laboratory 
performance and data quality.  Because of clean matrices of LCSs, the control 
limits should be treated as the minimal uncertainties for field samples.  LCS 
control limits may also be used to estimate the uncertainty of analyte recovery 
from field samples.  The uncertainty of the mean recovery of field samples could 
be estimated as: 
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where t(n-1, 1-α/2) is the 

Student’s t factor with n-1 degrees of freedom at 1-α/2 confidence level; σLCS is 
the standard deviation of the percent LCS recovery; and %R is the mean LCS 
recovery (2, 3).  Because of wide variations of matrix interferences, data biases at 
concentrations above MQLs will be assumed to be equal to the bias of mean 
LCS recoveries. 
 
Last, because LCSs are prepared with interference-free matrices, the laboratory 
performance on field samples must frequently be verified with blind real-world PE 
samples.  Double blind PE samples are preferred to single blind PE samples.  If 
a laboratory is able to pass double blind PE samples on a routine basis, the 
laboratory demonstrates its performance on field sample analysis. 
 
The four elements provide a foundation for the proposed approach.  Using MDLs 
and LCS recoveries to assess data quality of field samples assumes consistency 
and comparability among different laboratories.  The procedures used for 
determination of MDLs and the control limits of LCS recoveries will affect the 
values of MDLs and control limits, and hence the estimate of data uncertainties.  
It is noted that many laboratories do not exactly follow 40 CFR 136 to determine 
MDLs and use different procedures to establish QC control limits.  The remaining 
discussions address those variations and propose standardized protocols for 
determination of MDLs and control limits. 
 
MDL STUDY AND USAGE 
 
Although most laboratories follow Appendix B of 40 CFR 136 to determine MDL, 
there are some variations, which may affect the MDL values.  According to 40 
CFR 136, the determination procedures involve spiking seven replicate aliquots 
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of reagent water or sample matrix with analytes of interest at a concentration 
within one to five times the estimated MDL.  The seven aliquots are carried 
through the entire analytical process; the standard deviation of the seven 
replicate analyses is calculated; and the MDLs is determined as a product of the 
standard deviation and a one-tailed Student’s t factor. 
 
A common deviation of MDL studies is spiking too high to yield MDLs that are 
biased low.  According to Appendix B of 40 CFR 136, the spike concentrations of 
the seven MDL spikes should be one to five times the estimated MDL for reagent 
water matrix and one to ten for clean solids or sample matrices.  Otherwise, 
adjust the spike concentrations and repeat the study until the ratios are within 
these ranges.  Because MDLs are based on the variances at the measured 
concentrations, the validity of the ratios between spike concentrations and 
estimated MDLs should be verified by comparing the mean of the seven 
measured concentrations, instead of the nominal spike concentration, with the 
determined MDL. 
 
Because MDLs in real-world matrices could be elevated, the validity of MDLs in 
sample matrices should be verified.  Based on the definition of MDL presented in 
40 CFR 136, there is a 1% probability that a sample with no analyte will produce 
a concentration greater than or equal to the MDL.  However, there is a 50% 
probability that a sample with a true concentration at the MDL will be measured 
as less than the MDL.  For this reason, the validity of MDLs in other sample 
matrices shall be checked with MDL check samples in sample matrices at 
Reliable Detection Limits (RDLs) (4).  RDLs are based on the 1% probability of 
false negatives and are equal to twice the MDLs. 
 
A laboratory shall establish its method quantitation limits (MQLs) based on the 
determined MDLs.  At MQLs, the analytical errors should be no less than 
calibration errors, which are equal to the acceptance criteria for initial calibration 
verification (ICV) or continuing calibration verification (CCV).  The acceptance 
criteria are usually ±10% for inorganic or classical analyses and ±20% for organic 
analyses.  MQLs should therefore be set at ten times MDLs for inorganic and 
classical analyses and five times MDLs for organic analyses.  MQLs also 
determine the concentration levels of the lowest, allowable calibration standards. 
 
Because of the large uncertainty and bias associated with measured 
concentrations near the MDL, EPA did not specify acceptable limits for analyte 
recovery in MDL studies.  However, if there is an excessively low or high 
recovery, the determined MDLs may not be meaningful and an MDL check 
sample should be used to estimate the MDL.  For example, an MDL of 5µg/L 
based on 100µg/L MDL spikes and 10% recovery is not acceptable, because one 
could not reliably detect a 10µg/L spike if the recovery is 10%. 
 
CONTROL LIMITS OF LCS RECOVERY 
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Laboratories usually use control charts to demonstrate that it is under statistical 
control at a specified confidence.  The 99% confidence intervals of the mean are 
routinely used as the control limits if certain statistical assumptions (e.g., 
independent data, normal distribution, etc.) are met.  The control limits reported 
in a data package could be based on contract or regulatory requirements, 
published method performance data, or laboratory in-house empirically 
established control limits.  Using any of those control limits is acceptable as long 
as the laboratory has demonstrated its ability to achieve the limits on a routine 
basis. 
 
Many laboratories often report project-specified control limits in data packages.  
To ensure that data meet project-specified control limits, many laboratories 
screen LCS recovery data with the specified limits.  When LCS recovery is within 
the specified limits, laboratories consider the LCS recovery is acceptable; 
otherwise, reanalyze the LCS sample.  If the second analysis passes, 
laboratories take no further actions and report sample data and the specified 
control limits.  If the second analysis fails, laboratories take corrective actions 
and reanalyze all associated samples.  As long as each individual LCS recovery 
is within project-specified control limits, most laboratories consider their 
performances meet project-specified control limits.  However, if those LCS 
recovery data are charted, the calculated control limits are frequently wider than 
the specified limits even though each individual data is within the specified limits. 
 This infers that the laboratory performance does not meet project-specified limits 
and using project-specified control limits gives misleading information on 
laboratory performance and data quality.  A laboratory should use statistical 
control limits to demonstrate its performance.  The wider in-house control limits 
could be due to a small number of LCS recovery data, which often fail to meet 
statistical assumptions (i.e., normal distribution, independency, etc.)  Slightly 
wider in-house control limits are anticipated and acceptable if the sample size is 
small; however, when more data points (i.e., 20) are available, the data should 
show a central tendency and empirically established in-house control limits 
should meet project-specified control limits as a proof of acceptable laboratory 
performance. 
 
Technically, prediction intervals, instead of confidence intervals, should be used 
to establish control limits, because it is the uncertainty of the next data, instead of 
the existing data, that is to be determined (5).  Control limits based on prediction 
intervals are wider than those based on confidence intervals.  However, most 
laboratories use 99% confidence intervals to set control limits that lead an 
impression of tighter control and cause data comparability concerns.  It is often 
noted that some laboratories establish control limits based on very few (<10) data 
points and some based on several thousand data points collected over a period 
of several years.  Very few data points will not provide reliable control limits as 
discussed above; however, using data points over extended time may not reflect 
the current laboratory performance either.  In addition, many laboratories retain 
only acceptable LCS recovery data for control chart analysis so that the control 
limits are tightened over time.  Eventually, the laboratories have to rerun LCSs 
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frequently and the control limits are misleading.  Obviously, a protocol for 
establishing and using control limits is needed to ensure the consistency and 
comparability of control limits for LCS recovery.  The protocol should address the 
requirements for LCS concentration and matrix, sample size and distribution, 
outlier testing and treatment, statistical hypothesis and analysis, control chart 
updating and usage, etc.  It is recommended that the protocols be established 
based on ASTM or ISO guides. 
 
CONCLUSIONS 
 
MDL and LCS recovery are two unique analytical parameters that most 
environmental laboratories routinely perform using the same procedures and 
equivalent samples.  Because of their consistency and availability, MDL and LCS 
recovery could be used as universal indicators for evaluation of laboratory 
performance and data quality.  The precision and bias of LCS that are 
determined based on control charts of LCS recovery data may be used to 
estimate the precision and bias of sample data.  However, to ensure the data 
comparability, laboratories must explicitly follow specified protocols to determine 
MDLs and control limits for LCS recoveries.  Laboratories should frequently run 
MDL check samples and blind PE samples to check the validity of MDLs in the 
sample matrix and laboratory performance on field samples.  Laboratories must 
prepare and implement detailed SOPs for all key operations and document the 
results.  In-house SOPs on control charts and empirically established LCS 
control limits should be submitted for review of laboratory performance before 
sample analysis.  The proposed approach is simple to implement for assessing 
laboratory performance and data quality. 
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